

Key Facts About the Mathematics and

Computer Science Division

Range of Research

Researchers in the Mathematics and Computer Science Division attack complex problems in four key scientific areas important to our nation:

- Extreme Computing: developing new system and run-time technologies for future extreme-scale computers that handle the massive scale, increased failure rate and power management needs of these systems.
- Data-Intensive Science: formulating novel techniques for managing, storing, and visualizing the enormous amounts of data produced by leadership-class computers and large experimental facilities.
- Applied Mathematics: developing new algorithms and libraries for exploiting high-performance computing in targeted applications.
- Science & Engineering Applications: working with scientists and engineers to apply our advanced algorithms and software tools to challenging problems of national interest.

Award-Winning Software

MPICH: providing a high-performance, widely portable implementation of the Message Passing Interface standard.

Globus Online: enabling large quantities of information to be moved reliably, efficiently, and securely worldwide.

Globus Toolkit: enable the secure, scalable, and coordinated use of resources in dynamic, multi-institutional "virtual organizations."

PETSc: providing a suite of codes for solving large-scale problems modeled by partial differential equations.

Exciting New Initiatives

With the aim of enabling breakthroughs in science and engineering, we collaborate with the scientific community on solving problems critical to the national interest, including the following:

- CIM-EARTH, studying socioeconomic implications of climate change and energy policy.
- Earth Microbiome Project, characterizing global microbial taxonomic and functional diversity.

- Computation-Driven Discovery for the Dark Universe, seeking to shed light on dark matter and dark energy.
- Urban Sciences Center for Computation and Data, applying advanced computational techniques to the design of smarter cities.
- Center for Exascale Simulation of Advanced Reactors, developing innovative nuclear reactor analysis tools.
- Multifaceted Mathematics Center for Complex Energy Systems (M²ACS), tackling the long-term mathematical challenges arising in complex electrical energy systems.

Signature Software

MPICH Swift Nek5000 TAO

PETSc Model Coupling Toolkit

ADIC ROMIO PVFS MG-RAST Globus Toolkit **ADLB** MINOTAUR ZeptoOS

Director: Marc Snir

Deputy Division Director: Rajeev Thakur

Regular Staff: 86 Postdocs: 19 Students: 55

Joint Appointments / Visitors: 41

URL: www.mcs.anl.gov